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of these plagioclase-like spectra also display weak 2000 nm 
absorptions, suggesting the presence of small amounts of 
pyroxene or a spinel-bearing olivine. Although Tsiolkovskiy 
displays a wide range of spectral characteristics throughout the 
central peak, one of the clearest examples of a mafic-dominated 
component is a pyroxene-dominated spectrum shown in Figure 
2c. The example shown in Figure 2b (continuum-removed 
in Fig. 2e) represents a few exposures within Tsiolkovskiy’s 
central peak that display spectra with a broad, flat-bottomed 
shape. These spectra are distinguished from the flat-bottomed 
spectra in Copernicus, however, by the fact that the absorption 
covers a spectral range that extends below 1000 nm and a dis-
tinct absorption near 2000 nm is observed. This type of wide, 
completely flat composite absorption, with an associated 2000 
nm absorption is not observed in any of the binary laboratory 
mixtures presented in this paper. We suggest that this type of 
composite absorption may represent a mixture for which three 
different mineral components are spectrally significant, such 
as olivine, pyroxene, and plagioclase, or alternatively some 
absorbing component not considered here, such as a glass or 
a two-pyroxene mixture, both of which have somewhat broad 
primary absorption features. The spectral characteristics of 
the Tsiolkovskiy central peak are under investigation to better 
constrain the spatial distribution of mineralogic signatures in 
M3 data.
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Figure 18. Model plagioclase – orthopyroxene mixtures produced using the Hapke 1347 

forward model, with four synthetic orthopyroxene spectra as the mafic endmember (Klima et al. 1348 
2007). (a) 2 vol% orthopyroxene, (b) 5 vol% orthopyroxene, (c) 7 vol% orthopyroxene, (d) 10 1349 
vol% orthopyroxene.  1350 

Implications
Prior to the identification of the 1250 nm plagioclase ab-

sorption across the lunar surface, the mineralogy of the Moon’s 
primitive anorthositic crust was largely invisible to near-infrared 
spectrometers. Now that these anorthosites are accessible for 
evaluation, describing their global compositional diversity 
hinges on an ability to distinguish the signatures of different 
co-occurring minor minerals within a plagioclase matrix and 
make estimates about variations in their relative abundances. 
This study has been directed at demonstrating the various effects 
of composition (Fo#, En#, or Mg#) and abundance of olivine, 
pyroxene, and spinel on plagioclase-dominated reflectance spec-
tra using the simplest, purest end-members. The major findings 
demonstrate the following.

(1) Plagioclase is not simply a featureless high-albedo compo-
nent in all cases, but one that exerts measurable control on bulk 
spectral properties, particularly when present in high abundance.

(2) Plagioclase-mafic composite absorptions that are observed 
in spectra of mixtures containing ≤10% olivine or pyroxene 
are diagnostic of anorthosite-like mixtures. However, their 
individual characteristics depend on the type and composition 
of the mafic mineral.

(3) Plagioclase is easily “hidden” by a few percent olivine 
because the major absorptions of each mineral overlap substan-
tially. Some pyroxene and very high Mg-spinel spectra, however, 

Figure 18. Model plagioclase–orthopyroxene mixtures produced using the Hapke forward model, with four synthetic orthopyroxene spectra as the 
mafic end-member (Klima et al. 2007): (�D) 2 vol% orthopyroxene, (b) 5 vol% orthopyroxene, (�F) 7 vol% orthopyroxene, (�G) 10 vol% orthopyroxene.
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are highly distorted by the presence of plagioclase across a wider 
range of mixture proportions.

(4) For the mixtures explored here, those containing >10 vol% 
olivine, pyroxene, or spinel generally resemble spectra of these 
end-members by visual inspection. This observation emphasizes 
the importance of using caution when interpreting remote sens-
ing NIR spectral data that do not display explicit evidence for a 
plagioclase absorption.

(5) Nonlinear models can accurately predict mineral abun-
dances in anorthosite-like (≥90% plagioclase) mixture spectra 
to within 5 vol%. This validation of the nonlinear modeling 
approach for mixtures containing an abundant high-albedo 
component enables further investigation of the range of spectral 
characteristics expected for lunar anorthosites through the use of 
different end-members than those specifically investigated here.

While several other factors such as the space weathering of 
lunar surface materials invariably complicate the applications of 
these data for remotely sensed anorthosites, the well-controlled, 
systematic data set produced here provides a framework for 
developing applications to more complex remotely acquired 
spectra such as those observed at Orientale, Copernicus, and 
Tsiolkovskiy.
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