
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Precision and Accuracy of EO-1 Advanced
Land Imager (ALI) Data for Semiarid

Vegetation Studies
Andrew James Elmore and John Fraser Mustard

Abstract—Landsat Thematic Mapper (TM) data and spectral
mixture analysis have been used to estimate vegetation green
cover in the Great Basin, western United States, to 4.0% green
cover (%GC). In this paper, we compare estimates of percent
green cover derived from EO-1 Advanced Land Imager (ALI)
data to estimates derived from field-based analyses and to results
derived from Landsat Enhanced Thematic Mapper plus (ETM+)
data. These analyses define the precision and accuracy of ALI
and ETM+ for making quantitative measurements of earth for
semiarid ecological studies. The benefits of using ALI were not
observed in the calculated uncertainty values ( 5.61%GC and

6.15%GC for ETM+ and ALI, respectively). However, ALI did
not return as many negative green cover estimates and exhibited
lower spatial variance in regions of low green cover. These results
were attributed to the better signal to noise and data precision
inherent to the ALI sensor, and not to the increased number of
multispectral bands. ALI was found to be internally inconsistent
in that the third sensor chip assembly image swath contained
multispectral band coregistration errors. This caused a less than
25%GC error in the ALI estimate of percent green cover along
large vegetation gradients.

Index Terms—Environmental factors, remote sensing, spectral
mixture analysis, vegetation measurement.

I. INTRODUCTION

THE VAST extent of land-use and land-cover changes oc-
curring around the world demands that the remote sensing

community provide technologies capable of fast and effective
land monitoring. Nowhere is this more applicable than in arid
and semiarid lands where changes in water resources alter the
landscape on a regional scale. Remote sensing techniques have
become important for vegetation monitoring in these environ-
ments because fieldwork is difficult or impossible at scales
useful for management [1]. In addition to vegetation change
measurements, remote sensing observations can be useful
in revealing gradients in vegetation cover that can be further
shown to relate to precipitation, groundwater, or edaphic factors
across the landscape [2]. However, for remote sensing to be a
useful addition to traditional field techniques, any algorithm
retrieving ecological information must be quantitative in nature
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and result in meaningful measurements of ecosystem qualities
over time. When these criteria are met, remote sensing can be
used to quantify gradients and spatial heterogeneity over large
regions and through time, analyses that are difficult with field
techniques alone [3], [4].

We have shown that vegetation cover estimates accurate to
within 4.0% green cover (%GC) can be derived from Landsat
TM data using spectral mixture analysis (SMA) [5]. This result
was obtained by comparing concurrent Landsat TM and field
data representing a variety of shrubland and meadow plant com-
munities of the Great Basin, western United States and corrob-
orates with laboratory-based analyses of soil–vegetation mix-
tures [6]. Furthermore it was shown that the SMA estimates
were stable through time, with an estimated accuracy of 3.8%
in determining %GC using six years of concurrent field and
Landsat observations. SMA was found to be superior to vegeta-
tion indices such as the normalized difference vegetation index
(NDVI) because it is minimally affected by variations in soil
color and it results in a quantitative, physically meaningful, es-
timate of plant community condition. The need for consistent
measurements of this type, which allow for an understanding
of vegetation change through time, dictates that any Landsat
follow-on instrument meet or exceed these performance values.

In this paper, we compare the capabilities of EO-1 Advanced
Land Imager (ALI) data with the capabilities of Landsat En-
hanced Thematic Mapper plus (ETM+) for measurements of
vegetation cover. ALI is a nine-band 12-bit sensor and is, there-
fore, a higher technology sensor than Landsat ETM+, with
presumed better focusing (smaller IFOV) and material discrim-
ination abilities [7]. The nine bands of ALI were designed to
cover the ETM+ bandpasses, while extending the total func-
tionality. ALI includes two additional bands at 0.433–0.453
and 1.2–1.3 m, and the ETM+ band 4 (near-infrared) is split
into two bands. ALI is a pushbroom-type sensor, consisting of
four sensor chip assemblies (SCAs). During a data collection
event, each of the four SCAs collects an individual image and
the user joins these images. Differences in sensor construc-
tion may also play a role in the capability of each sensor for
ecological studies.

There are two approaches to sensor comparison. The first
seeks to understand the fundamental differences between
sensors through a band-by-band comparison of technological
variables such as SNR, which relate to the sensor capabilities
for material discrimination. The second approach utilizes an
end-to-end analysis of land cover, and then compares the end
products derived from each of two sensors. We take the second
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approach, with the end goal of understanding the advantages
and disadvantages of using ALI over ETM+ for ecological
studies. For this comparison to be useful, a consistent method-
ology must be employed when processing and analyzing these
data.

We analyzed concurrently acquired ALI, ETM+, and field data
in pursuit of three objectives: 1) to determine the capabilities
of ALI relative to ETM+ to calculate %GC of vegetation
comparable with field based measurements using the spectral
bands functionally equivalent to ETM+, 2) to determine the
capabilities of ALI to calculate the %GC of green vegetation
using the full complement of spectral bands and to compare these
results to the capabilities of ETM+, and 3) more generally, to
assess the capabilities of ALI and ETM+ to produce internally
consistent multispectral images for quantitative analysis in
ecological and land-use land-cover change applications. Our
primary emphasis within these objectives was the comparison
of remote measures of green cover with field-based analyses.
However, throughout the analysis we draw out differences
between the two sensor results, and in 3) we make a direct
image-to-image comparison of scene spatial variability.

II. METHOD

The EO-1 ALI and Landsat ETM+ sensors each acquired
one dataset on June 21, 2001 of Owens Valley, CA (Fig. 1).
Due to the orbital positions of the EO-1 and Landsat satellites,
these data were acquired only 1 min apart. This assured the data
were functionally identical in terms of sun zenith and azimuth.
Owens Valley, a semiarid basin located in eastern California,
was chosen for this study because of our ongoing research ac-
tivities in the region [5], [8]. Concurrent with these remote ac-
quisitions, field data were collected by the Inyo County Water
Department (ICWD) and the Los Angeles Department of Water
and Power (LADWP) on percent green cover at 27 field sites.
When possible, our methodology for the processing and com-
parison of these data followed our previous work [5]. From our
previous work, we also bring forward a georeferenced Landsat
TM dataset from September 1992.

Preprocessing

We reduced the nine-band ALI data to six bands, where
each of the six bands was functionally similar to one of the six
ETM+ bands. This was accomplished through the removal of
the 0.433–0.453- and 1.2–1.3- m bands, and the combination
of the two NIR bands by averaging the values. Using high spec-
tral resolution data of a Nevada saltbush (Atriplex lentiformis
ssp. torreyi) shrub, we tested the validity of approximating the
spectral response of ETM+ band 4 with the average of ALI
bands 4 and 4p. The true spectral response of the two ALI
bands was calculated and averaged, and then compared with
the ETM+ response. The difference between these values was
0.179%, which would be within the noise of a sensor with a
500-to-1 SNR. From this analysis, we were confident that the
average of bands 4 and 4p was a reasonable approximation of
ETM+ band 4. Therefore, three datasets were used to meet our
objectives: 1) ETM+ (six eight-bit bands), 2) ALI6 (six 12-bit

bands, functionally similar to the ETM+ bands), and 3) ALI9
(nine 12-bit bands).

The ETM+, ALI6, and ALI9 data were coregistered to the
previously georeferenced TM scene from 1992. In the case
of the ETM+ data, we used a second-order polynomial, and
automated ground-control-point-picking code to fit the data [5].
For the ALI data, we used a thin plate spline (TPS) algorithm
[9]. The TPS algorithm fits ground control points exactly and
then warps data around the points accordingly to achieve the
best fit. We manually selected over 100 ground control points.
The TPS algorithm was found to be an improvement over
the second-order polynomial for coregistering ALI. Through
the examination of road intersections and similar distinctive
land features it was determined that the resulting interimage
coregistration was within one pixel across the valley floor
(where the field sites were located).

Spectral Mixture Analysis

A linear spectral mixture analysis (SMA) approach [3], [10]
was taken using image-derived endmembers. Endmembers are
unique spectra that are thought to represent basic components of
the earth’s surface, such as vegetation and soil types. In SMA,
it is assumed that the spectrum retrieved from each pixel is a
linear combination of endmember spectra. The summation of
these endmember spectra, each multiplied by the proper frac-
tional coefficient, results in a model pixel spectrum where the
difference between the model and observation is the estimate
of error. To the extent that sensor radiance is a linear combina-
tion of endmember radiance, the coefficient is an estimate of the
fractional area of the pixel covered by that endmember [11]. In
semiarid datasets, endmembers are typically vegetation, shade
(to account for illumination and albedo effects), and one to three
soils depending on the number of bands utilized by the sensor
and the variability of soil reflectance among these bands.

The SMA algorithm is embodied in the following equations:

DN DN (1)

(2)

rmse (3)

where DN is the intensity {e.g., radiance, reflectance, digital
number (DN)} of a given pixel in bandpass or wavelength ;
is the fractional abundance of endmember , DN is the inten-
sity of image endmember at wavelength ; is the number of
endmembers; and is the error of the fit for bandpass (re-
ferred to in this paper as the band residual). For example, for
the analysis with ALI data, there will be nine equations, one for
each spectral band ( ). Equation (2) constrains the sum of
the fractions to equal unity; however, there is no constraint that
the fractions must be between 0.0 and 1.0. Allowing individual
fractions outside the range 0.0–1.0 provides important informa-
tion on the validity of endmember selection [12], [13]. Equation
(3) is the total rmse where is the number of spectral bands.
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Fig. 1. EO-1 ALI data (center) and Landsat ETM+ (background) data from Owens Valley, CA, showing the locations of each of the datasets and the vegetation
field sites used in this study. The field sites represented a variety of shrub and meadow plant communities.

An additional calculation can be employed to normalize
the vegetation fraction to account for the fraction of shade
calculated for each pixel [3]. This approach can be particularly
useful in environments where the shade fraction is correlated
with the vegetation fraction (i.e., the vegetation canopy is
casting shadows on adjacent vegetation dependent on the sun

angle). However, we have found that the shade fraction is often
negatively correlated with soil brightness. When this is the
case, there is no benefit to normalizing for shade because the
resulting vegetation fraction becomes negatively correlated
with soil brightness. Therefore, shade normalization was not
employed in this study.
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Fig. 2. There were three sets of endmember spectra used in this study. (A) Historic endmembers used in [5] were aligned with the current datasets (ETM+ and
ALI6) to assess the capability of ALI to extend the legacy of ETM+. (B) ETM+ best case endmembers were image derived from the same types of features as
the historical endmembers, but modeled total scene variance more efficiently. (C) ALI9 best case endmembers utilized all 9 bands and were, therefore, a better
representation of the capabilities of ALI for estimating percent green cover.

Endmembers

The most critical step in SMA is the selection of endmem-
bers. Endmembers must be representative of physical materials
in the scene. They must also, through the mixture model, bound
nearly all of the spectral variance of the scene, thus reducing
the total rmse to a value close to the known noise level of the
instrument. Additionally, band residual images [ in (1)] and
rmse images must exhibit very little surface texture other than
that due to sensor noise. For this analysis, we selected three sets
of endmembers.

The first set we called the historic endmembers [Fig. 2(A)]
because they were extracted from a 1992 Landsat-5 scene.
These endmembers were used to model Landsat data of Owens
valley, consisting of annual observations covering the past 17
years [5], [8], and thus, we have demonstrated that these spectra
provide a robust set for quantitative modeling of the surface
through time. The application of historical endmembers is
important because of the need to maintain or improve accuracy
through a consistent methodology with transitions to new
sensors. If ALI, through SMA, cannot properly model the
surface using the historical endmembers, then it will not be
useful as a monitoring tool in studies such as ours in Owens
Valley. The historical endmembers were reported by [5], and
included 1) vegetation from a very well watered meadow close
to the Owens River, 2) an alkaline (light) soil from the valley
floor, 3) a dark, organic-rich soil from a meadow community,
and 4) shade [Fig. 2(A)].

The historical endmembers are image derived and have not
been corrected for atmospheric effects. Therefore, we aligned
the endmember spectra to the radiometric variance inherent to
the newly acquired data before performing SMA. Four tem-
porally invariant surface features (TISFs) were identified on
the valley floor. These included both light and dark surfaces
and were not vegetated. Band-by-band, the radiometric response
from these surfaces in the 1992 ETM+ data acquisition was re-
gressed against the surface response identified from the current
datasets. In this way, a set of gain and offset correction fac-
tors were calculated for the ALI6 and ETM+ data. These values

were then used to align the historical endmember spectra to the
image data before SMA was performed. Spectral alignment of
endmember spectra relieves the need for atmospheric removal
and does not alter the spectral characteristic of the data. Spec-
tral alignment is the only way vegetation fraction results de-
rived using SMA can be compared between images, especially
through time [14], [15].

Historic endmembers allow us to make a direct comparison
of vegetation estimates between images. This analysis demon-
strates the capabilities of ALI to continue the legacy of Landsat
TM and ETM+ for measuring vegetation change through time.
However, it is possible that the historic endmembers would not
model the scene’s spectral variance with the same efficiency as
endmembers particular to the new observation. This is an uncer-
tainty we must accept when we attempt to measure vegetation
change. But, there is an issue of bias if we chose endmembers
from Landsat data and then draw conclusions from how well
they perform when applied to ALI data. For a best case anal-
ysis, image endmembers should be chosen from the dataset they
are applied to using SMA, which relieves the need for spectral
alignment of the endmember spectra to scene radiometry. For
these reasons, we selected a second set of endmembers repre-
senting the best case scenario for the Landsat ETM+ data. These
four endmembers [Fig. 2(B)] were selected from the same types
of surface cover used to define the historic endmembers. How-
ever, the new endmembers resulted in a lower rmse and lower
band-residual errors.

For comparison with the best case ETM+ endmembers, a
third set of endmember spectra were selected from the ALI9
data (ALI best case scenario). A fifth endmember representing
alluvial fan soils on the western side of Owens Valley was
required to achieve an acceptable solution. The requirement of
this additional soil endmember was not unexpected, as SMA
solutions using TM and ETM+ data suggested a component of
unmodeled spectral variance in these soils, but was unresolved
with the bands of TM or ETM+. This was the first apparent
advantage of using ALI data over TM or ETM+, because it
provided confidence that the total scene variance was being
modeled by the endmember spectra.
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Using SMA, we analyzed ETM+ data with historical and
ETM+ best case endmembers (two separate analyses), ALI6
data with the historical and ETM+ best case endmembers (two
separate analyses), and ALI9 with the ALI best case endmem-
bers (one analysis). In the case of the ALI6 data analyses, we
always aligned the endmember spectra (using the TISF-derived
correction factors) to the data prior to running SMA. This
process assured that the endmembers were appropriately scaled
for use with ALI data, without altering the radiometry of the
data.

Comparison With Field Data

Field data was collected at 33 field sites across Owens Valley
between the days of June 17 and June 28 by ICWD and the
LADWP. Twenty-seven of these sites fell within the ALI image.
At each site, percent green cover was recorded using the point-
frame method along 100-m transects. This method involves po-
sitioning a metal frame supporting vertical pins over the shrub
and grass canopy [16], [17]. Pins are lowered through the frame
at 33-cm intervals and the material the tip of the pin hits first
is recorded. The percent of these pins (totaling 334) that hit
green vegetation is recorded as the %GC. Multiple measure-
ments of the same field site were used to estimate the uncer-
tainty in making a single measurement at 2.3%GC [5].

Two grass species and three shrub species, all phreatophytes,
dominated the field sites. The grass species were saltgrass (Dis-
tichlis spicata) and alkali sacaton (Sporobolus airoides), and
the shrub species were Nevada saltbush (Atriplex lentiformis
ssp. torreyi), rabbitbrush (Chrysothamnus nauseosus), and
greasewood (Sarcobatus vermiculatus). Depth-to-water (satu-
rated soil) at these sites ranged from 1 to 5 m and greatly
influenced vegetation cover, which ranged from 3%GC to
52%GC and averaged 22.3%GC [18], [19].

After running SMA on the image data, each field site was lo-
cated in the image and the %GC values for a square of 4 pixels
were extracted from the vegetation fraction results. Great care
was taken in locating each field site in the image data employing
GPS and air-photographs [5]. In some cases, the field sites were
located along gradients in vegetation cover where the correspon-
dence between field and remote measurements of cover was sen-
sitive to the determined site location.

Image-to-Image Comparison

As mentioned in the Introduction, one advantage of using re-
motely sensed data over field data is the capability to study spa-
tial variability and gradients in vegetation cover that may relate
to biophysical processes. ALI data, with a higher data precision
(12-bit versus eight-bit) and higher signal-to-noise particularly
for low radiance, is potentially of greater use in these types of
studies. To test this idea, the spatial standard deviation (STD)
of the vegetation estimates resulting from the two sensor data
was compared in two ways. First, the STD of %GC values was
calculated for the area surrounding each field site location (one
pixel radius). And these values were evaluated as a function of
the total %GC measured in the field at each site.

Second, we compared %GC and spatial STD of %GC across
a gradient in vegetation cover for each of the two sensor re-
sults. An elevational gradient was located along the alluvial fans

on the western side of the valley where vegetation increases
with increasing elevation due to greater precipitation at higher
elevations [2]. Vegetation cover ranged from less than five to
about 35%GC along this gradient and no man-made structures
(roads, fences) appeared to intersect the established profile. A
one-pixel-wide profile was sampled from the ALI and ETM+
SMA results using the historical endmembers. We then calcu-
lated the STD for every five pixels along the profile and com-
pared the sensor results.

Finally, we made a general assessment of the SMA results
using each of the two sensors. Through SMA, band residual
images were produced and evaluated for consistency and sen-
sitivity to endmember selection. When endmembers are appro-
priately chosen, band residual images and total rmse images [see
(3)] exhibit few signs of surface features. By comparing the band
residual and rmse images between sensor results, we made an in-
tegrative assessment of SMA as an investigative tool using ALI
and ETM+ data.

III. RESULTS

Our results compare the capability of each sensor to estimate
vegetation cover. In each case, this capability is assessed
relative to the field results, but the field results have inherent
limitations. Therefore, we have treated each of the techniques as
an independent measurement. We then directly compare results
derived from each sensor in an image-to-image comparison
of the spatial STD and band residual values across the entire
region.

Historic Endmembers

The use of historic endmembers allows us to determine
the capability of the ALI sensor to continue the legacy of the
Landsat sensors. For each sensor, we have plotted the SMA
results against field results from the 27 field sites (Fig. 3).
SMA and field estimates of vegetation cover are measurements
of the same quantities. Therefore, if SMA were perfect at
representing field-based measurements, all of the data would
fall along the 1 : 1 line. We have drawn the 1 : 1 line through the
data on each of the plots (thin line). However, the data do not
always fall on the 1 : 1 line, and instead follow a line parallel to
the 1 : 1 line, but offset from it. This offset, which represents
a bias in the measurements (on the part of either SMA or the
field technique), was also seen in our previous work where it
had the same sense: the SMA %GC estimates were typically
lower that the field measurements. To illustrate the bias for
each relationship we have drawn a line parallel to the 1 : 1 line
at a distance equal to the average bias value.

A comparison of these results reveals that ALI performed
slightly better than ETM+ through several types of assessment:
1) the average distance from the 1 : 1 line is smaller for ALI
(3.80%GC for the ALI data and 7.23%GC for the ETM+ data);
2) there are fewer negative vegetation estimates reported using
ALI data (one negative value) than using ETM+ data (eight neg-
ative values); 3) the STD of the data points from the bias-cor-
rected 1 : 1 line is similar for the two sets of results, but smaller
for the case using ALI (7.01%GC for ALI and 7.43%GC for
ETM+). In 3), we are quantifying the average deviation of the
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Fig. 3. Comparison of (A) ALI6 and (B) ETM+ for the estimation of percent green cover using SMA and historical endmembers reveals the capability of ALI
to extend the legacy of the Landsat sensors. Note the near lack of negative vegetation cover values reported by ALI and the shorter error bars reported by ETM+
at high percent green cover values. In addition, ALI exhibited a smaller bias than ETM+, as indicated by the space between the two lines drawn on each plot
(bias values are summarized in Table I). Error bars are derived from the mathematical error in the SMA model, the sensitivity of the model result to the spectral
alignment of endmember spectra to the image data, and the uncertainty in our knowledge of field site location within the image data. See [5] for a more detailed
description of error-bar calculation.

Fig. 4. Comparison of ALI9 (A) and ETM+ (B) for the SMA estimate of percent green cover using the best case endmembers for each dataset reveals the best result
for each sensor using this technique. ETM+ and ALI return very similar results when best case endmembers are used, indicating that despite extra multispectral
bands and 12-bit precision, ALI does not report vegetation cover values with better accuracy or precision for specific field sites.

TABLE I
DATASETS AND ENDMEMBERS USED IN SPECTRAL MIXTURE ANALYSIS.

OFFSET FROM THE 1 : 1 LINE. STANDARD DEVIATION FROM THE

BIAS-CORRECTED 1 : 1 LINE. FROM [5]

data from the relationship between the SMA and field results.
In past work, we have used this value as the uncertainty in using
SMA to estimate field-based measurements of %GC. These re-
sults indicate that ALI produces values with similar uncertainty
to ETM+ when historic endmembers are used, but exhibits ad-
vantages in terms of the number of negative values reported and
the average bias from the 1 : 1 line.

Best Case Endmembers

The use of historical endmembers is illustrative for deter-
mining the worth of ALI for continuing the legacy of the Landsat
sensors. However, for reasons outlined in the endmember sec-
tion above, we selected new endmembers from each dataset and
performed SMA. The best case endmembers resulted in a lower
rmse and lower individual band residuals when applied to each
sensor and, therefore, represent a comparison of sensor capabil-
ities under an ideal analysis.

The SMA results using best case endmembers reveal that
when appropriate endmembers are chosen independently for
each of the two sensors, the results are similar (Fig. 4). As an
indication of this statement, the average bias from the 1 : 1 line
is similar for each dataset. Additionally, there is only one nega-
tive value each for ALI and ETM+; however, relative to the ALI
result, ETM+ resulted in a lower STD from the bias-corrected
1 : 1 line (Table I). We also applied the ETM+ best case end-
members to the ALI6 dataset (not plotted), and noted that these
results were very similar to the ETM+ best case results.
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Fig. 5. (A) Spatial standard deviation (STD) of %GC surrounding each field site plotted against the %GC measured in the field exhibits an increasing relationship
for both sensor results using best case endmembers. In (B), the STD value for each field site from each sensor result is compared. Together, (A) and (B) demonstrate
that spatial variability in vegetation cover increases with total cover, and that the ALI result is more effective at detecting this trend.

Fig. 6. When %GC as measured by the two sensors is compared along a profile from low cover to high cover the differences in spatial variability are profound.
ALI consistently reports less noise between adjacent pixels than does ETM+ at low green cover. However, at high green cover ETM+ and ALI are more similar,
as indicated by the five-point running standard deviation. For this figure, the SMA results using the historical endmembers are presented, but this result was
independent of endmember selection.

Table I summarizes the results by providing the mean bias
from the 1 : 1 line and the STD about the 1 : 1 line for each
SMA result. Despite some variation between the results for each
dataset, all bias values were 7.23%GC and STD from the 1 : 1
line were 7.43%GC. There were no large and consistent dif-
ferences between ALI and ETM+ results using this measure.
The STD for the best case endmembers for the ALI data was
6.44%GC. The offset value can always be subtracted and is also
removed when measuring year-to-year change (by subtracting
data from two consecutive years) [5]. Therefore, we can use
this value as an uncertainty in finding a unique 1 : 1 relation-
ship between SMA results and field results. If we believe field
measurements represent the true %GC, then the STD from the
1 : 1 line is also the uncertainty in measuring percent green cover
with SMA (i.e., 6.44%GC).

Image-to-Image Comparison: Analysis of Variance

Many factors likely influence spatial STD at the field site lo-
cations, but total %GC was found to be one important determi-
nant [Fig. 5(B)]. From air photographs we also observed that
the proximity of roads, irrigation ditches, and other man-made
structures added additional spatial variability at selected sites. It
was not a direct objective of this paper to identify the factors in-

fluencing spatial variability in %GC. Instead, we make the con-
jecture that spatial variability (measured as spatial STD) is an
important observation for the remote sensing ecologist. There-
fore, we compare the spatial STD reported by each of the sensors
to assess the worth of each sensor for this type of measurement.

Fig. 5(A) demonstrates that the trend toward higher STD at
sites with high %GC is more pronounced in the ALI results. The
difference between the two sensor results is clearly exhibited
when the STD values from each sensor result are directly
compared [Fig. 5(B)]. ALI reports higher STD values than
ETM+ and the difference between the two sensors scales with
total variability. A comparison of Fig. 5(A) and (B) reveals
that the spatial STD at a site is greater for ALI at all sites,
nearly independent of total %GC. However, at several low cover
( 15%GC) sites ETM+ reports larger spatial STD [Fig. 5(A)].
In Fig. 5(B), this effect is represented by the negative axis
intercept value, which is calculated from the linear regression
between the two sensor results ( ).

We also investigated the variability in vegetation cover along
a profile that extended across a vegetation gradient (Fig. 6).
When vegetation cover was low ETM+ exhibited greater vari-
ability along the profile than did ALI. This difference is less
pronounced at higher green cover values. The profile did not
extend into a region of green cover 35%; however, the pattern
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as seen at this range in %GC supports the result that ALI ex-
hibits lower variance at low green cover and higher variance at
high green cover than does ETM+. This pattern is again evident
in the five-point running STD values along the profile (Fig. 6).
The STD of the ETM+ results is greater than that for the ALI
result at the low cover end of the profile. However, when cover
reaches values above 10%GC, the STD values are more similar.

Image-to-Image Comparison: Internal Consistency

Comparison of the ETM+ and ALI data revealed inconsis-
tencies in the multispectral (MS) band coregistration within the
ALI data. The MS band 3 (the 0.63–0.69- m band) residual [
from (1)] exhibits the effects of this inconsistency (Fig. 7). Cir-
cles in the figure are center-pivot irrigation agricultural fields
and, therefore, exhibit steep changes in vegetation green cover
around their boundaries. These boundaries form white and black
pairs in SCA-3 but not in SCA-4, indicating a problem in ALI
band-to-band registration.

In an attempt to determine the influence of the band misreg-
istration on the SMA results, we compared the vegetation es-
timates retrieved along the transect highlighted in Fig. 7. This
transect crosses a center-pivot agricultural field and is located
within the overlap region of SCA-3 and SCA-4; therefore, we
directly compared results from the two SCAs. We also compare
vegetation estimates with the difference in MS band 3 residual
between the SCA-3 and SCA-4 along this transect (Fig. 8). The
residual difference calculation is SCA-3 minus SCA-4 residual,
which has the effect of removing the nominal (SCA-4) band
residual and emphasizing the SCA-3 band residual.

Green cover estimates from the two SCAs are similar, but at
the edges of the agricultural fields the two estimates separate
up to 25%GC. For pixels with a high SCA-3 band residual
SMA results in an underestimation of %GC. When SCA-3
reports a low value, the opposite is true, and the %GC is
overestimated. This pattern is evident across the entire transect,
and not only at the single points where the SCA-3 band residual
is much greater than the SCA-4 band residual. At these single
points, we are seeing the effect of error in the coregistration
between the two SCAs. Considering that the pattern between
the vegetation estimates and the band-residual difference is
consistent across the entire length of the transect, we believe
the result is robust and can be extrapolated to other regions of
the image. The multispectral band misregistration would cause
the largest discrepancy in the vegetation estimates reported by
SCA-3 wherever low green-cover regions are located adjacent
to high green-cover regions (i.e., steep vegetation gradients).

IV. DISCUSSION

The accuracy of all results was less than reported in [5], but
in the previous study six years of data and 33 monitoring sites
(198 observations) were used. Because of the narrower image
extent and the fact that ALI has only been in orbit for one year,
we were only able to use 27 sites and one year of data for this
study. Adding additional measurements of the same field sites
(different collection dates) would conceivably reduce the av-
erage bias from the 1 : 1 line. Another difference is the time of
year the study was conducted. In [5], the remote and field-based

Fig. 7. Band 4 residual image [E from (1)] showing the effect of
a multispectral band misregistration in SCA3, but not SCA4. The
center-point-irrigation fields clearly identifiable in the SCA3 part of the
image do, in fact, extend into SCA4, but they are not visible in the image.

Fig. 8. Difference between the SCA3 and SCA4 MS-band-3 residual
highlights the white/black pair apparent at the boundaries of the center
point agricultural field from Fig. 7. In the pixels returning high SCA3
MS-band-3 residual, SCA3 underestimates the green cover by as much as
25%GC. Conversely, in pixels returning low SCA3 MS-band-3 residual, SCA
overestimates the green cover. This pattern is apparent across the entire transect.

observations were made in August versus June for the current
study. This difference may be important as total green cover,
variability in green cover, and species proportions are changing
throughout the summer months.

Despite the differences between the two analyses, the direc-
tion of the offset was the same for this study as for that reported
by [5] and the uncertainty values calculated were within a factor
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of two (Table I). Additionally, these results corroborate with the
results from other field studies [3], [4] and laboratory studies
[6]. It is becoming increasingly apparent that vegetation mea-
surements derived from SMA, though demonstrating measur-
able uncertainty, are reliable estimates of the true land cover.
Furthermore, our previous work has shown that the bias ob-
served between SMA and field results is removed in a measure-
ment of change in cover (the bias varies little through time for
each field site). When vegetation change is the key variable of
interest, SMA provides a robust tool for ecological studies.

The results of this paper demonstrate that in future work it
would be valid to substitute ALI data, or data from a similar
sensor, for ETM+ data without loss of quality in the end vege-
tation estimates. This is a significant result because it indicates
that it is SMA (the method) and not the sensor data that limits
our ability to accurately measure vegetation cover in these en-
vironments. Factors such as nonlinear reflectance effects [20],
[21] and the effects of soil brightness and color [6], [22] have
been repetitively cited as plausible causes of uncertainty in veg-
etation measurements. These factors may limit the capability of
SMA for vegetation measurements, but variations on the tech-
nique have repetitively been used with great success [2], [3],
[23]–[26]. Therefore, it is our opinion that the limitations of this
method do not restrict its use for ecological studies, particularly
in an analysis of change [8].

A comparison of the plots in Fig. 3 reveals that ALI returned
only one negative green cover value and ETM+ returned eight
negative values. This is a remarkable result and, if consistent
across multiple datasets and through time, would indicate a sig-
nificant benefit of using ALI data over ETM+ data. Negative
values become less important in a measure of change, and can
often be avoided through the selection of appropriate endmem-
bers (e.g., our best case endmembers). However, when it is nec-
essary to use the same endmembers in multiple images or when
measures of absolute green cover are desired, negative values
are nonphysical and are therefore difficult to interpret. For the
data in Fig. 3, the same endmembers were used in the analysis of
each sensor data and they each had the same number of bands.
Therefore, there are only two differences between the datasets
that could have resulted in fewer negative cover estimates. The
first difference is the increased data precision associated with
data dimension (12 versus 8 bit) and SNR, which may have
given ALI the added precision to discriminate correctly between
low cover sites.

The second difference is the position of the near infrared
band. The fourth band of the six-band ALI dataset was cre-
ated through averaging MS band 4 (0.775–0.805 m) and 4p
(0.845–0.890 m). Although similar, this is not the same as the
ETM+ band 4 (0.75–0.90 m). Our analysis of the sensitivity
of the combined ALI band 4 suggested that there would be very
little difference between this band and ETM+ band 4. However,
the ALI band 4 and 4p combination avoids the water absorption
feature between 0.805–0.845 m and, therefore, would be less
sensitive to variations in atmospheric water across the scene. In-
creased water vapor at the field site relative to the sites used in
the spectral alignment process would lower the measured radi-
ance in the near infrared, thus forcing SMA to return negative
vegetation values for those pixels. Future work will investigate

the effect of water vapor on vegetation measurements using this
method.

In the second component to this study, we performed a di-
rect comparison of the spatial variability detected by the ALI
and ETM+ sensors. The primary conclusion was that the spatial
variability reported by the two sensors was not the same at all
levels of homogeneity. First, at low spatial variability (homoge-
neous surfaces) ALI reported lower variability than did ETM+.
This phenomenon was best observed in Fig. 6, where ALI-de-
rived vegetation measurements across a low-cover bajada ex-
hibited very low scatter. We believe this to be a result of better
precision inherent to the ALI data, which would conceivably
reduce the scatter in the vegetation measurement. Second, at
high spatial variability (heterogeneous surfaces), ALI reported
higher variability than did ETM+. This was best seen in the re-
lationship between the two sensor results when comparing the
STD of vegetation cover extracted from pixels surrounding the
field sites [Fig. 5(B)]. In the semiarid landscape, it is common
to find that surface heterogeneity is positively correlated with
total cover. We found this to be true at our field site locations:
the spatial variability detected by ALI at high cover sites was
greater than that detected by ETM+. The capability to correctly
separate adjacent pixels of varying vegetation cover is deter-
mined by the IFOV of the sensor, which is smaller for ALI than
for ETM+. This feature apparently helps to identify spatial vari-
ability when it exists at the pixel scale. When phenomena related
to spatial variability are of ecological interest, ALI is clearly a
better sensor to use in their study. Finally, the difference in spa-
tial variability detected by each of the two sensors was indepen-
dent of endmember selection or the number of bands used in
the analysis. Therefore, the precision of the sensor data and the
IFOV (as described above) are the only remaining sensor pa-
rameters that can be proposed as a plausible explanation for this
effect.

The issue of variations in the consistency of the ALI data
between SCAs is potentially important for ecological studies
using this method. The white and black pairs seen in Fig. 7 are
clearly due to a misregistration of the multispectral bands in
SCA-3. We have investigated the original data and noted the
miss registration. However, we are aware that a leaky-pixel
correction algorithm has been applied to this band of SCA-3 [7],
[27] and that this algorithm may be related to the misregistration.
We identified up to 25%GC differences between the SCA-3 and
SCA-4 estimates of green cover along a steep vegetation gradient
(Figs. 7 and 8). These results indicate that the inconsistency will
cause mismeasurements of vegetation cover in regions of high
spatial variation of vegetation cover, and effects will be minimal
on vegetation estimates in homogeneous regions. Therefore, we
recommend that the influence of the inconsistency in SCA-3
be assessed on a case-by-case basis and that researchers using
these data be aware that it might have consequences for their
work.

V. CONCLUSION

The ability to make consistent measurements of percent green
cover in the arid regions of earth through time is critical for mon-
itoring and understanding vegetation change. Spectral mixture
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analysis continues to provide this capability, by producing accu-
rate measures of percent green cover. When applied to ALI data,
SMA returned estimates of vegetation cover that were compa-
rable to field measurements and to values returned by ETM+
data. ALI reported lower variance in %GC estimates across tar-
gets with low spatial variability and fewer negative values in
regions of very low cover. These benefits appear to be the re-
sult of better signal-to-noise and higher data precision inherent
to ALI, because the results were invariant under the number of
bands used in the analysis. ALI also exhibited greater sensitivity
to variations between pixels, particularly in regions of high veg-
etation cover.

Overall, it is a result of this paper that the technological im-
provements built into ALI were realized in the precision and
accuracy of the derived vegetation measurements. However, the
improvements exhibited by ALI were only incremental, which
suggests that inherent limitations of the method (SMA) applied
to multispectral data of this type limit the ultimate accuracy
of derived vegetation measurements. Nonetheless, SMA pro-
vides a reliable measurement of %GC that, using the methods
of [5] is consistent over time, and highly beneficial for analysis
of change [8]. Our results indicate that there are advantages in
using ALI over ETM+ in terms of lower sensor noise and the
ability to more completely model the spectral variance of this
semiarid region with the additional spectral bands.
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